

Optimizing the diffusion of overdamped Langevin dynamics

Régis SANTET

(CERMICS, École des Ponts & MATHERIALS Team, Inria Paris)

Joint work with: T. Lelièvre, G. Pavliotis, G. Robin, G. Stoltz

Mostly Monte Carlo, January 2024

R. Santet (CERMICS/MATHERIALS)

Mostly Monte Carlo

Outline

- I. Overdamped Langevin dynamics
 - Computing average properties...
 - ...using various diffusion coefficients...
 - ...to accelerate convergence

II. Characterization of the optimal diffusion

- Establish a proper optimization problem...
- ...to obtain necessary conditions on the solution.
- Approximation using homogenization

III. Numerical results

- Approximate numerically the optimal diffusion...
- ...approximate the dynamics...
- to observe the efficiency gains

Outline

- I. Overdamped Langevin dynamics
 - Computing average properties...
 - ...using various diffusion coefficients...
 - ...to accelerate convergence
- II. Characterization of the optimal diffusion
 - Establish a proper optimization problem...
 - ...to obtain necessary conditions on the solution.
 - Approximation using homogenization
- III. Numerical results
 - Approximate numerically the optimal diffusion...
 - ...approximate the dynamics...
 - to observe the efficiency gains

Target distribution

$$\mathrm{d}\pi = Z_\pi^{-1} \mathrm{e}^{-\beta V(q)} \mathrm{d}q$$

Target distribution

$$\mathrm{d}\pi = Z_\pi^{-1} \mathrm{e}^{-\beta V(q)} \mathrm{d}q$$

Use overdamped Langevin dynamics: $q_t \in \mathbb{T}^d$

$$\mathrm{d}q_t = -\nabla V(q_t) \,\mathrm{d}t + \sqrt{2\beta^{-1}} \,\mathrm{d}W_t$$

• This is simply a stochastic perturbation of gradient dynamics

(1)

Target distribution

$$\mathrm{d}\pi=Z_{\pi}^{-1}\mathrm{e}^{-\beta V(q)}\mathrm{d}q$$

Use overdamped Langevin dynamics: $q_t \in \mathbb{T}^d$

$$\mathrm{d}q_t = -\nabla V(q_t) \,\mathrm{d}t + \sqrt{2\beta^{-1}} \,\mathrm{d}W_t$$

• This is simply a stochastic perturbation of gradient dynamics Ergodic average

$$\mathbb{E}_{\pi}[f] \approx \frac{1}{N} \sum_{i=1}^{N} f(q^{i})$$

with (q^i) samples from a trajectory solving (1)

(1)

Properties of the standard overdamped Langevin dynamics

Generator $\mathcal{L} = -\nabla V \cdot \nabla + \beta^{-1} \Delta$

Properties of the standard overdamped Langevin dynamics Generator $\mathcal{L} = -\nabla V \cdot \nabla + \beta^{-1} \Delta$

 \bullet irreducibility/ergodicity: $\mathcal L$ is elliptic

Properties of the standard overdamped Langevin dynamics Generator $\mathcal{L} = -\nabla V \cdot \nabla + \beta^{-1} \Delta$

- \bullet irreducibility/ergodicity: $\mathcal L$ is elliptic
- reversibility: self-adjoint on $L^2(\pi)$

$$\mathcal{L} = -\beta^{-1} \nabla^* \nabla, \qquad \partial_{q_i}^* = -\partial_{q_i} + \beta \partial_{q_i} V$$

Properties of the standard overdamped Langevin dynamics Generator $\mathcal{L} = -\nabla V \cdot \nabla + \beta^{-1} \Delta$

- \bullet irreducibility/ergodicity: $\mathcal L$ is elliptic
- reversibility: self-adjoint on $L^2(\pi)$

$$\mathcal{L} = -\beta^{-1} \nabla^* \nabla, \qquad \partial_{q_i}^* = -\partial_{q_i} + \beta \partial_{q_i} V$$

• invariance of the canonical measure: $\mathcal{L}^* \mathbf{1} = 0 \Leftrightarrow \mathcal{L}^{\dagger} \pi = 0$

$$\frac{d}{dt} \left[\mathbb{E}_{\pi}(\varphi(q_t)) \right] = \frac{d}{dt} \left(\int_{\mathbb{T}^d} e^{t\mathcal{L}} \varphi \, \mathrm{d}\pi \right) = \int_{\mathbb{T}^d} \mathcal{L} \left(e^{t\mathcal{L}} \varphi \right) \, \mathrm{d}\pi = 0$$

where $e^{t\mathcal{L}}\varphi(q_0) = \mathbb{E}_{q_0}[\varphi(q_t)]$

Diffusion matrix $\mathcal{D}(q) \in \mathcal{S}_d^+(\mathbb{R})$ (not necessarily definite)¹

$$dq_t = \left(-\mathcal{D}(q_t)\nabla V(q_t) + \beta^{-1}\operatorname{div}\mathcal{D}(q_t)\right) dt + \sqrt{2\beta^{-1}}\mathcal{D}^{1/2}(q_t) dW_t$$

with $\operatorname{div} \mathcal{D}_i \equiv \mathsf{divergence}$ of *i*-th column of $\mathcal{D} \to \mathsf{generator} \ \mathcal{L}_{\mathcal{D}}$

¹Jardat/Bernard/Turq/Kneller (1999), Bou-Rabee/Donev/Vanden-Eijnden (2014)

Diffusion matrix $\mathcal{D}(q) \in \mathcal{S}_d^+(\mathbb{R})$ (not necessarily definite)¹

$$dq_t = \left(-\mathcal{D}(q_t)\nabla V(q_t) + \beta^{-1}\operatorname{div}\mathcal{D}(q_t)\right) dt + \sqrt{2\beta^{-1}}\mathcal{D}^{1/2}(q_t) dW_t$$

with $\operatorname{div} \mathcal{D}_i \equiv \mathsf{divergence}$ of *i*-th column of $\mathcal{D} \to \mathsf{generator} \ \mathcal{L}_{\mathcal{D}}$

Observations

• $\mathcal{L}_{I_d} = \mathcal{L}$: sensible generalization

¹Jardat/Bernard/Turq/Kneller (1999), Bou-Rabee/Donev/Vanden-Eijnden (2014)

Diffusion matrix $\mathcal{D}(q) \in \mathcal{S}_d^+(\mathbb{R})$ (not necessarily definite)¹

$$dq_t = \left(-\mathcal{D}(q_t)\nabla V(q_t) + \beta^{-1}\operatorname{div}\mathcal{D}(q_t)\right) dt + \sqrt{2\beta^{-1}}\mathcal{D}^{1/2}(q_t) dW_t$$

with $\operatorname{div} \mathcal{D}_i \equiv \mathsf{divergence}$ of *i*-th column of $\mathcal{D} \to \mathsf{generator} \ \mathcal{L}_{\mathcal{D}}$

Observations

•
$$\mathcal{L}_{I_d} = \mathcal{L}$$
: sensible generalization
• $\mathcal{L}_{\mathcal{D}} = -\beta^{-1} \nabla^* \mathcal{D} \nabla = -\beta^{-1} \sum_{i,j=1}^d \partial_{q_j}^* \mathcal{D}_{i,j} \partial_{q_i}$ still self-adjoint

¹Jardat/Bernard/Turq/Kneller (1999), Bou-Rabee/Donev/Vanden-Eijnden (2014)

Diffusion matrix $\mathcal{D}(q) \in \mathcal{S}_d^+(\mathbb{R})$ (not necessarily definite)¹

$$dq_t = \left(-\mathcal{D}(q_t)\nabla V(q_t) + \beta^{-1}\operatorname{div}\mathcal{D}(q_t)\right) dt + \sqrt{2\beta^{-1}}\mathcal{D}^{1/2}(q_t) dW_t$$

with $\operatorname{div} \mathcal{D}_i \equiv \mathsf{divergence}$ of *i*-th column of $\mathcal{D} \to \mathsf{generator} \ \mathcal{L}_{\mathcal{D}}$

Observations

•
$$\mathcal{L}_{I_d} = \mathcal{L}$$
: sensible generalization
• $\mathcal{L}_{\mathcal{D}} = -\beta^{-1} \nabla^* \mathcal{D} \nabla = -\beta^{-1} \sum_{i,j=1}^d \partial_{q_j}^* \mathcal{D}_{i,j} \partial_{q_i}$ still self-adjoint

•
$$\mathcal{L}_{\mathcal{D}}\mathbf{1} = 0$$
: π is an invariant probability measure

¹Jardat/Bernard/Turq/Kneller (1999), Bou-Rabee/Donev/Vanden-Eijnden (2014)

Diffusion matrix $\mathcal{D}(q) \in \mathcal{S}_d^+(\mathbb{R})$ (not necessarily definite)¹

$$dq_t = \left(-\mathcal{D}(q_t)\nabla V(q_t) + \beta^{-1}\operatorname{div}\mathcal{D}(q_t)\right) dt + \sqrt{2\beta^{-1}}\mathcal{D}^{1/2}(q_t) dW_t$$

with $\operatorname{div} \mathcal{D}_i \equiv \mathsf{divergence}$ of *i*-th column of $\mathcal{D} \to \mathsf{generator} \ \mathcal{L}_{\mathcal{D}}$

Observations

•
$$\mathcal{L}_{I_d} = \mathcal{L}$$
: sensible generalization

•
$$\mathcal{L}_{\mathcal{D}} = -\beta^{-1} \nabla^* \mathcal{D} \nabla = -\beta^{-1} \sum_{i,j=1}^a \partial_{q_j}^* \mathcal{D}_{i,j} \partial_{q_i}$$
 still self-adjoint

- $\mathcal{L}_{\mathcal{D}}\mathbf{1} = 0$: π is an invariant probability measure
- $\mathcal{D} \equiv$ inverse of position-dependent mass tensor/metric (RMHMC)²

 ¹Jardat/Bernard/Turq/Kneller (1999), Bou-Rabee/Donev/Vanden-Eijnden (2014)
 ²Girolami/Calderhead (2011), Lelièvre/RS/Stoltz (2023)

Diffusion matrix $\mathcal{D}(q) \in \mathcal{S}_d^+(\mathbb{R})$ (not necessarily definite)¹

$$dq_t = \left(-\mathcal{D}(q_t)\nabla V(q_t) + \beta^{-1}\operatorname{div}\mathcal{D}(q_t)\right) dt + \sqrt{2\beta^{-1}}\mathcal{D}^{1/2}(q_t) dW_t$$

with $\operatorname{div} \mathcal{D}_i \equiv \mathsf{divergence}$ of *i*-th column of $\mathcal{D} \to \mathsf{generator} \ \mathcal{L}_{\mathcal{D}}$

Observations

•
$$\mathcal{L}_{I_d} = \mathcal{L}$$
: sensible generalization

•
$$\mathcal{L}_{\mathcal{D}} = -\beta^{-1} \nabla^* \mathcal{D} \nabla = -\beta^{-1} \sum_{i,j=1}^a \partial^*_{q_j} \mathcal{D}_{i,j} \partial_{q_i}$$
 still self-adjoint

- $\mathcal{L}_{\mathcal{D}}\mathbf{1} = 0$: π is an invariant probability measure
- $\mathcal{D} \equiv$ inverse of position-dependent mass tensor/metric (RMHMC)²

Motivations

- Explore efficiently multimodal targets
- Compensate for anisotropic potential energy landscapes

 ¹ Jardat/Bernard/Turq/Kneller (1999), Bou-Rabee/Donev/Vanden-Eijnden (2014)
 ² Girolami/Calderhead (2011), Lelièvre/RS/Stoltz (2023)

• Example with $V(q) = \sin(4\pi q)(2 + \sin(2\pi q))$ $\mathcal{D}_{opt}, \mathcal{D}_{exp} = e^{\beta V}, \mathcal{D}_{cst} = a \in \mathbb{R}$ (all three normalized in $L^2(\pi)$)

• Example with $V(q) = \sin(4\pi q)(2 + \sin(2\pi q))$ $\mathcal{D}_{opt}, \mathcal{D}_{exp} = e^{\beta V}, \mathcal{D}_{cst} = a \in \mathbb{R}$ (all three normalized in $L^2(\pi)$)

• 'Optimal' \mathcal{D} helps to cross energy barriers (if $V \uparrow$, then $\mathcal{D} \uparrow$)

Measuring convergence

- asymptotic variance in CLT
- \bullet convergence of the law at time t towards the target distribution
- average exit time of a mode

This work \rightarrow second option in a $L^2(\pi)$ framework

Measuring convergence

- asymptotic variance in CLT
- convergence of the law at time t towards the target distribution
- average exit time of a mode

This work \rightarrow second option in a $L^2(\pi)$ framework

Main tool

Poincaré inequality satisfied by $\boldsymbol{\pi}$

$$\forall \pi_0 \in L^2(\pi^{-1}), \qquad \int_{\mathbb{T}^d} \left(\frac{\pi_0}{\pi} - 1\right)^2 \, \mathrm{d}\pi \leqslant \frac{\beta}{\Lambda(\mathcal{D})} \int_{\mathbb{T}^d} \left| \nabla \left(\frac{\pi_0}{\pi}\right) \right|^2 \, \mathrm{d}\pi$$

 $\Lambda(\mathcal{D}):$ smallest nonzero eigenvalue of $-\beta\mathcal{L}_{\mathcal{D}}:$ the spectral gap

Claim Poincaré inequality implies that

$$\forall \pi_0 \in L^2(\pi^{-1}), \qquad \left\| \frac{\pi_t}{\pi} - 1 \right\|_{L^2(\pi)} \leqslant e^{-\beta^{-1} \Lambda(\mathcal{D})t} \left\| \frac{\pi_0}{\pi} - 1 \right\|_{L^2(\pi)}$$

where π_t is the law at time t of the overdamped Langevin process

Claim Poincaré inequality implies that

$$\forall \pi_0 \in L^2(\pi^{-1}), \qquad \left\| \frac{\pi_t}{\pi} - 1 \right\|_{L^2(\pi)} \leqslant e^{-\beta^{-1} \Lambda(\mathcal{D})t} \left\| \frac{\pi_0}{\pi} - 1 \right\|_{L^2(\pi)}$$

where π_t is the law at time t of the overdamped Langevin process

Conditions to obtain a Poincaré inequality

- bounded connected domains: equivalent to Lebesgue measure (Poincaré–Wirtinger inequality)
- Whole domain: conditions on the growth of V at infinity
- In general: Logarithmic Sobolev Inequalities

...to accelerate convergence (3/4)

Spectral gap on
$$H_0^1(\pi) = \left\{ u \in H^1(\pi) \middle| \int_{\mathbb{T}^d} u \, \mathrm{d}\pi = 0 \right\}$$

1

$$\Lambda(\mathcal{D}) = \inf_{u \in H_0^1(\pi) \setminus \{0\}} \frac{\int_{\mathbb{T}^d} \nabla u^{\mathsf{T}} \mathcal{D} \nabla u \, \mathrm{d}\pi}{\int_{\mathbb{T}^d} u^2 \, \mathrm{d}\pi}$$

т

1

This work \to Maximize the spectral gap $\Lambda(\mathcal{D})$ w.r.t. \mathcal{D}

Choices in the literature

- $\mathcal{D} = (\nabla^2 V)^{-1}$ for strictly convex potentials²
- + $\mathcal{D}=\mathrm{e}^{\beta V}$ 'Langevin tempered algorithms' 3

³Roberts/Stramer (2002)

²Girolami/Calderhead (2011)

• Optimizing the diffusion in the case of the uniform distribution⁴

- Optimizing the diffusion in the case of the uniform distribution⁴
- Optimizing the diffusion for reversible MC on discrete spaces⁵

⁴Henrot (2006)
 ⁵Boyd/Diaconis/Parrilo/Xiao (2009)

- Optimizing the diffusion in the case of the uniform distribution⁴
- Optimizing the diffusion for reversible MC on discrete spaces⁵
- Other choices to accelerate convergence, e.g. non-reversible drifts⁶

 $dq_t = (-\nabla V(q_t) + b(q_t)) dt + \sqrt{2\beta^{-1}} dW_t, \qquad \nabla \cdot (b\pi) = 0$

⁴Henrot (2006)

⁵Boyd/Diaconis/Parrilo/Xiao (2009)

⁶e.g. Lelièvre/Nier/Pavliotis (2013)

- Optimizing the diffusion in the case of the uniform distribution⁴
- Optimizing the diffusion for reversible MC on discrete spaces⁵
- Other choices to accelerate convergence, *e.g.* non-reversible drifts⁶

 $dq_t = (-\nabla V(q_t) + \mathbf{b}(q_t)) dt + \sqrt{2\beta^{-1}} dW_t, \qquad \nabla \cdot (b\pi) = 0$

This work: staying in the realm of reversible dynamics

⁴Henrot (2006)

⁵Boyd/Diaconis/Parrilo/Xiao (2009)

⁶e.g. Lelièvre/Nier/Pavliotis (2013)

Overdamped Langevin dynamics: summary

• Aim: Estimation of
$$\mathbb{E}_{\pi}[f] = \int_{\mathbb{T}^d} f d\pi, \quad \pi \propto e^{-\beta V}$$

with the estimator

$$\hat{I}_N := \frac{1}{N} \sum_{i=1}^N f(q^i), \qquad q^i \sim \pi$$

with q^i obtained from the integration of the overdamped Langevin dynamics $% \boldsymbol{q}^{i}$

$$dq_t = \left(-\mathcal{D}(q_t)\nabla V(q_t) + \beta^{-1}\operatorname{div}\mathcal{D}(q_t)\right)dt + \sqrt{2\beta^{-1}}\mathcal{D}(q_t)^{1/2}dW_t$$

Overdamped Langevin dynamics: summary

• Aim: Estimation of
$$\mathbb{E}_{\pi}[f] = \int_{\mathbb{T}^d} f d\pi, \quad \pi \propto e^{-\beta V}$$

with the estimator

$$\hat{I}_N := \frac{1}{N} \sum_{i=1}^N f(q^i), \qquad q^i \sim \pi$$

with q^i obtained from the integration of the overdamped Langevin dynamics

$$dq_t = \left(-\mathcal{D}(q_t)\nabla V(q_t) + \beta^{-1}\operatorname{div}\mathcal{D}(q_t)\right)dt + \sqrt{2\beta^{-1}}\mathcal{D}(q_t)^{1/2}dW_t$$

• Difficulty: explore anisotropic potentials with multiple minima

Overdamped Langevin dynamics: summary

• Aim: Estimation of
$$\mathbb{E}_{\pi}[f] = \int_{\mathbb{T}^d} f d\pi, \quad \pi \propto e^{-\beta V}$$

with the estimator

$$\hat{I}_N := \frac{1}{N} \sum_{i=1}^N f(q^i), \qquad q^i \sim \pi$$

with q^i obtained from the integration of the overdamped Langevin dynamics

$$dq_t = \left(-\mathcal{D}(q_t)\nabla V(q_t) + \beta^{-1}\operatorname{div}\mathcal{D}(q_t)\right)dt + \sqrt{2\beta^{-1}}\mathcal{D}(q_t)^{1/2}dW_t$$

- Difficulty: explore anisotropic potentials with multiple minima
- Challenge: Find optimal diffusion coefficient \mathcal{D} to accelerate convergence \Rightarrow Maximize the spectral gap $\Lambda(\mathcal{D})!$

Outline

- I. Overdamped Langevin dynamics
 - Computing average properties...
 - ...using various diffusion coefficients...
 - ...to accelerate convergence

II. Characterization of the optimal diffusion

- Establish a proper optimization problem...
- ...to obtain necessary conditions on the solution.
- Approximation using homogenization
- III. Numerical results
 - Approximate numerically the optimal diffusion...
 - ...approximate the dynamics...
 - to observe the efficiency gains

Need to set normalizing constraints on $\ensuremath{\mathcal{D}}$

• $\Lambda(a\mathcal{D}) = a\Lambda(\mathcal{D}) \xrightarrow[a \to +\infty]{} +\infty$: large \mathcal{D} requires smaller time steps

14/30

• L^{∞} bounds trivial (simply saturates the constraint)

Need to set normalizing constraints on $\ensuremath{\mathcal{D}}$

• $\Lambda(a\mathcal{D}) = a\Lambda(\mathcal{D}) \xrightarrow[a \to +\infty]{} +\infty$: large \mathcal{D} requires smaller time steps

14/30

• L^{∞} bounds trivial (simply saturates the constraint)

Our choice: L^p constraint on \mathcal{D} : $\mathcal{D} \in L^p_{\pi}(\mathbb{T}^d, \mathcal{M}_{a,b})$ for $1 \leq p \leq +\infty, a, b \geq 0$ if

$$\mathrm{e}^{-\beta V(q)} \mathcal{D}(q) \in \mathcal{M}_{a,b} = \left\{ M \in \mathcal{S}_d^+ \, \Big| \, \forall \xi \in \mathbb{R}^d, a \, |\xi|^2 \leqslant \xi^\mathsf{T} M \xi \leqslant b^{-1} \, |\xi|^2 \right\} \text{ a.e.}$$

endowed with

$$\|\mathcal{D}\|_{L^p_{\pi}} = \left(\int_{\mathbb{T}^d} |\mathcal{D}(q)|_{\mathrm{F}}^p \,\mathrm{e}^{-\beta p V(q)} \,\mathrm{d}q\right)^{1/p}$$

Need to set normalizing constraints on $\ensuremath{\mathcal{D}}$

• $\Lambda(a\mathcal{D}) = a\Lambda(\mathcal{D}) \xrightarrow[a \to +\infty]{} +\infty$: large \mathcal{D} requires smaller time steps

14/30

• L^{∞} bounds trivial (simply saturates the constraint)

Our choice: L^p constraint on \mathcal{D} : $\mathcal{D} \in L^p_{\pi}(\mathbb{T}^d, \mathcal{M}_{a,b})$ for $1 \leq p \leq +\infty, a, b \geq 0$ if

$$\mathrm{e}^{-\beta V(q)} \mathcal{D}(q) \in \mathcal{M}_{a,b} = \left\{ M \in \mathcal{S}_d^+ \, \Big| \, \forall \xi \in \mathbb{R}^d, a \, |\xi|^2 \leqslant \xi^\mathsf{T} M \xi \leqslant b^{-1} \, |\xi|^2 \right\} \text{ a.e.}$$

endowed with

$$\|\mathcal{D}\|_{L^p_{\pi}} = \left(\int_{\mathbb{T}^d} |\mathcal{D}(q)|_{\mathrm{F}}^p \,\mathrm{e}^{-\beta p V(q)} \,\mathrm{d}q\right)^{1/p}$$

Maximization is performed on

$$\mathfrak{D}_p^{a,b} = \left\{ \mathcal{D} \in L^\infty_\pi(\mathbb{T}^d, \mathcal{M}_{a,b}) \, \Big| \, \|\mathcal{D}\|_{L^p_\pi} \leqslant 1 \right\}$$

Need to set normalizing constraints on $\ensuremath{\mathcal{D}}$

• $\Lambda(a\mathcal{D}) = a\Lambda(\mathcal{D}) \xrightarrow[a \to +\infty]{} +\infty$: large \mathcal{D} requires smaller time steps

14/30

• L^{∞} bounds trivial (simply saturates the constraint)

Our choice: L^p constraint on \mathcal{D} : $\mathcal{D} \in L^p_{\pi}(\mathbb{T}^d, \mathcal{M}_{a,b})$ for $1 \leq p \leq +\infty, a, b \geq 0$ if

$$e^{-\beta V(q)} \mathcal{D}(q) \in \mathcal{M}_{a,b} = \left\{ M \in \mathcal{S}_d^+ \left| \forall \xi \in \mathbb{R}^d, a \left| \xi \right|^2 \leqslant \xi^\mathsf{T} M \xi \leqslant b^{-1} \left| \xi \right|^2 \right\} \text{ a.e.}$$

endowed with

$$\|\mathcal{D}\|_{L^p_{\pi}} = \left(\int_{\mathbb{T}^d} |\mathcal{D}(q)|_{\mathbf{F}}^p e^{-\beta p V(q)} \,\mathrm{d}q\right)^{1/p}$$

Maximization is performed on

$$\mathfrak{D}_p^{a,b} = \left\{ \mathcal{D} \in L^{\infty}_{\pi}(\mathbb{T}^d, \mathcal{M}_{a,b}) \, \Big| \, \|\mathcal{D}\|_{L^p_{\pi}} \leqslant 1 \right\}$$

Open question: what is a good normalization ? Likely related to the numerics...

Existence of a maximizer for $p \in [1, +\infty)$: for any $a \in [0, |\mathbf{I}_d|_{\mathbf{F}}^{-1}]$ and b > 0 such that $ab \leq 1$, there exists $\mathcal{D}^{\star} \in \mathfrak{D}_p^{a,b}$ such that

$$\Lambda(\mathcal{D}^{\star}) = \sup_{\mathcal{D} \in \mathfrak{D}_p^{a,b}} \Lambda(\mathcal{D})$$
Establish a proper optimization problem... (2/2)

Existence of a maximizer for $p \in [1, +\infty)$: for any $a \in [0, |\mathbf{I}_d|_{\mathbf{F}}^{-1}]$ and b > 0 such that $ab \leq 1$, there exists $\mathcal{D}^{\star} \in \mathfrak{D}_p^{a,b}$ such that

$$\Lambda(\mathcal{D}^{\star}) = \sup_{\mathcal{D} \in \mathfrak{D}_p^{a,b}} \Lambda(\mathcal{D})$$

Moreover, it holds:

• For any open set $\Omega \subset \mathbb{T}^d$, there exists $q \in \Omega$ such that $\mathcal{D}^{\star}(q) \neq 0$ • $\int_{\mathbb{T}^d} |\mathcal{D}^{\star}(q)|_{\mathrm{F}}^p e^{-\beta p V(q)} \,\mathrm{d}q = 1$

Establish a proper optimization problem... (2/2)

Existence of a maximizer for $p \in [1, +\infty)$: for any $a \in [0, |\mathbf{I}_d|_{\mathbf{F}}^{-1}]$ and b > 0 such that $ab \leq 1$, there exists $\mathcal{D}^{\star} \in \mathfrak{D}_p^{a,b}$ such that

$$\Lambda(\mathcal{D}^{\star}) = \sup_{\mathcal{D} \in \mathfrak{D}_p^{a,b}} \Lambda(\mathcal{D})$$

Moreover, it holds:

For any open set Ω ⊂ T^d, there exists q ∈ Ω such that D^{*}(q) ≠ 0
 ∫_{T^d} |D^{*}(q)|^p_F e^{-βpV(q)} dq = 1

Proof ideas:

- Λ is bounded (Poincaré inequality)
- Λ is concave (sup of linear functions in \mathcal{D})
- Λ is upper semicontinuous for the weak-* L^{∞}_{π} topology (b > 0)
- the set $\mathfrak{D}_p^{a,b}$ is compact for the same topology

...to obtain necessary conditions on the solution. (1/2) 16/30

Settings: $p \in (1, +\infty)$, $|\cdot|_{\mathrm{F}} \equiv$ Frobenius norm, a = 0 and b > 0 'small enough', continuity assumption for \mathcal{D}^{\star} for d = 1

Claim If \mathcal{D}^{\star} is uniformly definite positive, then the eigenvalue $\Lambda(\mathcal{D}^{\star})$ is degenerate

...to obtain necessary conditions on the solution. (1/2) 16/30

Settings: $p \in (1, +\infty)$, $|\cdot|_F \equiv$ Frobenius norm, a = 0 and b > 0 'small enough', continuity assumption for \mathcal{D}^{\star} for d = 1

Claim If \mathcal{D}^\star is uniformly definite positive, then the eigenvalue $\Lambda(\mathcal{D}^\star)$ is degenerate

Proof If not, write the Euler-Lagrange equation (perturbation theory)

$$\int_{\mathbb{T}^d} \delta \mathcal{D} : \left(\nabla u_{\mathcal{D}^\star} \otimes \nabla u_{\mathcal{D}^\star} \right) \mathrm{d}\pi = p\gamma \int_{\mathbb{T}^d} \left| \mathcal{D}^\star \right|_{\mathrm{F}}^{p-2} \mathcal{D}^\star : \delta \mathcal{D} \, \mathrm{e}^{-\beta p V} \, \mathrm{d}q$$

where $-\beta \mathcal{L}_{\mathcal{D}^{\star}} u_{\mathcal{D}^{\star}} = \lambda(\mathcal{D}^{\star}) u_{\mathcal{D}^{\star}}$ so that $\mathcal{D}^{\star} = \alpha \left| \mathcal{D}^{\star} \right|^{2-p} e^{\beta(p-1)V} \nabla u_{\mathcal{D}^{\star}} \otimes \nabla u_{\mathcal{D}^{\star}} \to \text{contradiction } !$...to obtain necessary conditions on the solution. (1/2) 16/30

Settings: $p \in (1, +\infty)$, $|\cdot|_F \equiv$ Frobenius norm, a = 0 and b > 0 'small enough', continuity assumption for \mathcal{D}^{\star} for d = 1

Claim If \mathcal{D}^{\star} is uniformly definite positive, then the eigenvalue $\Lambda(\mathcal{D}^{\star})$ is degenerate

Proof If not, write the Euler-Lagrange equation (perturbation theory)

$$\int_{\mathbb{T}^d} \delta \mathcal{D} : (\nabla u_{\mathcal{D}^\star} \otimes \nabla u_{\mathcal{D}^\star}) \, \mathrm{d}\pi = p\gamma \int_{\mathbb{T}^d} |\mathcal{D}^\star|_{\mathrm{F}}^{p-2} \, \mathcal{D}^\star : \delta \mathcal{D} \, \mathrm{e}^{-\beta p V} \, \mathrm{d}q$$

where $-\beta \mathcal{L}_{\mathcal{D}^{\star}} u_{\mathcal{D}^{\star}} = \lambda(\mathcal{D}^{\star}) u_{\mathcal{D}^{\star}}$ so that $\mathcal{D}^{\star} = \alpha |\mathcal{D}^{\star}|^{2-p} e^{\beta(p-1)V} \nabla u_{\mathcal{D}^{\star}} \otimes \nabla u_{\mathcal{D}^{\star}} \rightarrow \text{contradiction} !$

Difficulty: the map $\mathcal{D} \mapsto \Lambda(\mathcal{D})$ may therefore not be differentiable at \mathcal{D}^* , it cannot be used as is to characterize \mathcal{D}^*

...to obtain necessary conditions on the solution. (2/2) 17/30

Smooth-maximum approach: $\sup_{\mathcal{D}\in\mathfrak{D}_p^{a,b}} f_{\alpha}(\mathcal{D})$ and let $\alpha \to +\infty$

$$f_{\alpha}(\mathcal{D}) = \frac{\mathrm{Tr}_{L^{2}(\mu)}(\mathcal{L}_{\mathcal{D}}\mathrm{e}^{\alpha\mathcal{L}_{\mathcal{D}}})}{\mathrm{Tr}_{L^{2}(\mu)}(\mathrm{e}^{\alpha\mathcal{L}_{\mathcal{D}}}) - 1} = \frac{\sum_{i \ge 2} \lambda_{i}\mathrm{e}^{\alpha\lambda_{i}}}{\sum_{i \ge 2}\mathrm{e}^{\alpha\lambda_{i}}} \xrightarrow[\alpha \to +\infty]{} \lambda_{2}$$

...to obtain necessary conditions on the solution. (2/2) 17/30

Smooth-maximum approach: $\sup_{\mathcal{D}\in\mathfrak{D}_p^{a,b}} f_{\alpha}(\mathcal{D})$ and let $\alpha \to +\infty$

$$f_{\alpha}(\mathcal{D}) = \frac{\mathrm{Tr}_{L^{2}(\mu)}(\mathcal{L}_{\mathcal{D}}\mathrm{e}^{\alpha\mathcal{L}_{\mathcal{D}}})}{\mathrm{Tr}_{L^{2}(\mu)}(\mathrm{e}^{\alpha\mathcal{L}_{\mathcal{D}}}) - 1} = \frac{\sum_{i \ge 2} \lambda_{i}\mathrm{e}^{\alpha\lambda_{i}}}{\sum_{i \ge 2}\mathrm{e}^{\alpha\lambda_{i}}} \xrightarrow[\alpha \to +\infty]{} \lambda_{2}$$

• Euler–Lagrange equation for f_{α}

$$\mathcal{D}^{\star,\alpha} = \gamma_{\alpha} \left| \mathcal{D}^{\star,\alpha} \right|_{\mathrm{F}}^{2-p} \mathrm{e}^{\beta(p-1)V} \sum_{k \ge 2} \left[\frac{G_{\alpha}(1+\alpha\lambda_{k,\alpha}) - \alpha H_{\alpha}}{G_{\alpha}^{2}} \mathrm{e}^{\alpha\lambda_{k,\alpha}} \right] \nabla e_{k,\alpha} \otimes \nabla e_{k,\alpha}$$

where $G_{\alpha} = \sum_{i \ge 2} e^{\alpha \lambda_{i,\alpha}}, H_{\alpha} = \sum_{i \ge 2} \lambda_{i,\alpha} e^{\alpha \lambda_{i,\alpha}}$

• The limit depends on $\lim_{\alpha \to +\infty} \alpha(\lambda_{j,\alpha} - \lambda_{2,\alpha})$

...to obtain necessary conditions on the solution. (2/2) 17/30

Smooth-maximum approach: $\sup_{\mathcal{D}\in\mathfrak{D}_p^{\alpha,b}} f_{\alpha}(\mathcal{D})$ and let $\alpha \to +\infty$

$$f_{\alpha}(\mathcal{D}) = \frac{\mathrm{Tr}_{L^{2}(\mu)}(\mathcal{L}_{\mathcal{D}}\mathrm{e}^{\alpha\mathcal{L}_{\mathcal{D}}})}{\mathrm{Tr}_{L^{2}(\mu)}(\mathrm{e}^{\alpha\mathcal{L}_{\mathcal{D}}}) - 1} = \frac{\sum_{i \ge 2} \lambda_{i}\mathrm{e}^{\alpha\lambda_{i}}}{\sum_{i \ge 2}\mathrm{e}^{\alpha\lambda_{i}}} \xrightarrow[\alpha \to +\infty]{} \lambda_{2}$$

• Euler–Lagrange equation for f_{α}

$$\mathcal{D}^{\star,\alpha} = \gamma_{\alpha} \left| \mathcal{D}^{\star,\alpha} \right|_{\mathrm{F}}^{2-p} \mathrm{e}^{\beta(p-1)V} \sum_{k \ge 2} \left[\frac{G_{\alpha}(1+\alpha\lambda_{k,\alpha}) - \alpha H_{\alpha}}{G_{\alpha}^{2}} \mathrm{e}^{\alpha\lambda_{k,\alpha}} \right] \nabla e_{k,\alpha} \otimes \nabla e_{k,\alpha}$$

where $G_{\alpha} = \sum_{i \ge 2} e^{\alpha \lambda_{i,\alpha}}, H_{\alpha} = \sum_{i \ge 2} \lambda_{i,\alpha} e^{\alpha \lambda_{i,\alpha}}$

- The limit depends on $\lim_{\alpha \to +\infty} \alpha(\lambda_{j,\alpha} \lambda_{2,\alpha})$
- Typical example: d = 1, degeneracy of order 2 for $\lambda_{2,\infty}$

$$\mathcal{D}^{\star,\infty} = \gamma_{\infty} e^{\beta V} \left(\left| e_{2,\infty}' \right|^2 + \frac{e^{\eta} (1 + e^{\eta} + \eta)}{1 + e^{\eta} - \eta e^{\eta}} \left| e_{3,\infty}' \right|^2 \right)^{1/(p-1)}$$

Approximation using homogenization theory (1/1)

18/30

Approximation using homogenization theory (1/1)

Goal: Obtain a good approximation of the optimal diffusion

• Idea 1: study the asymptotic behaviour of the optimal diffusion in the homogenized limit

• Idea 2: optimize the periodic homogenization limit

Approximation using homogenization theory (1/1)

Goal: Obtain a good approximation of the optimal diffusion

• Idea 1: study the asymptotic behaviour of the optimal diffusion in the homogenized limit

• Idea 2: optimize the periodic homogenization limit

Commutation optimization/homogenization: maximize $\Lambda_{hom}(\mathcal{D})$

$$\mathcal{D}_{\mathrm{hom}}^{\star}(q) = \mathrm{e}^{\beta V(q)} \mathrm{I}_d$$

Characterization of the optimal diffusion: summary 19/30

Normalizing constraints on \mathcal{D} : our choice is

$$\left\|\mathcal{D}\right\|_{L^p_{\pi}} = \left(\int_{\mathbb{T}^d} |\mathcal{D}(q)|_{\mathrm{F}}^p \,\mathrm{e}^{-\beta p V(q)} \,\mathrm{d}q\right)^{1/p}$$

Characterization of the optimal diffusion: summary 19/30

Normalizing constraints on \mathcal{D} : our choice is

$$\|\mathcal{D}\|_{L^p_{\pi}} = \left(\int_{\mathbb{T}^d} |\mathcal{D}(q)|_{\mathrm{F}}^p \,\mathrm{e}^{-\beta p V(q)} \,\mathrm{d}q \right)^{1/p}$$

Characterization of \mathcal{D}^{\star}

- possible degeneracy of the spectral gap $\Lambda(\mathcal{D}^{\star})$ implies differentiability issues
- smooth-maximum approach adapted to $\mathcal{L}_{\mathcal{D}}$ (trace-class operator on $L^2(\pi))$
- Can vanish on single points \rightarrow ergodicity issues

Characterization of the optimal diffusion: summary 19/30

Normalizing constraints on \mathcal{D} : our choice is

$$\|\mathcal{D}\|_{L^p_{\pi}} = \left(\int_{\mathbb{T}^d} |\mathcal{D}(q)|_{\mathbf{F}}^p \, \mathrm{e}^{-\beta p V(q)} \, \mathrm{d}q \right)^{1/p}$$

Characterization of \mathcal{D}^{\star}

- possible degeneracy of the spectral gap $\Lambda(\mathcal{D}^{\star})$ implies differentiability issues
- smooth-maximum approach adapted to $\mathcal{L}_{\mathcal{D}}$ (trace-class operator on $L^2(\pi))$
- Can vanish on single points \rightarrow ergodicity issues

Homogenization theory: good approximation is

$$\mathcal{D}_{\mathrm{Hom}}^{\star}(q) = \mathrm{e}^{\beta V(q)} \mathrm{I}_d$$

Outline

- I. Overdamped Langevin dynamics
 - Computing average properties...
 - ...using various diffusion coefficients...
 - ...to accelerate convergence
- II. Characterization of the optimal diffusion
 - Establish a proper optimization problem...
 - ...to obtain necessary conditions on the solution.
 - Approximation using homogenization

III. Numerical results

- Approximate numerically the optimal diffusion...
- ...approximate the dynamics...
- to observe the efficiency gains

Approximate numerically the optimal diffusion... (1/4) 21/30

Maximization of the spectral gap

- $\bullet~D$ isotropic, piecewise constant, on uniform mesh
- Finite Element approximation of test functions/eigenfunctions

Approximate numerically the optimal diffusion... (1/4) 21/30

Maximization of the spectral gap

- D isotropic, piecewise constant, on uniform mesh
- Finite Element approximation of test functions/eigenfunctions
- Sequential Least Squares Quadratic Programming algorithm for nonlinear eigenvalue problem with constraints

$$A(D)U_D = \lambda(D)BU_D, \qquad U_D^{\mathsf{T}}BU_D = \mathbf{I}_d$$

with

$$[A(D)]_{i,j} = \int_{\mathbb{T}^d} \nabla \varphi_j^\mathsf{T} D \nabla \varphi_i \, \mathrm{d}\pi, \qquad [B]_{i,j} = \int_{\mathbb{T}^d} \varphi_j \varphi_i \, \mathrm{d}\pi$$

 \rightarrow Generalized eigenvalue problem

Approximate numerically the optimal diffusion... (1/4) 21/30

Maximization of the spectral gap

- D isotropic, piecewise constant, on uniform mesh
- Finite Element approximation of test functions/eigenfunctions
- Sequential Least Squares Quadratic Programming algorithm for nonlinear eigenvalue problem with constraints

$$A(D)U_D = \lambda(D)BU_D, \qquad U_D^{\mathsf{T}}BU_D = \mathbf{I}_d$$

with

$$[A(D)]_{i,j} = \int_{\mathbb{T}^d} \nabla \varphi_j^\mathsf{T} D \nabla \varphi_i \, \mathrm{d}\pi, \qquad [B]_{i,j} = \int_{\mathbb{T}^d} \varphi_j \varphi_i \, \mathrm{d}\pi$$

 \rightarrow Generalized eigenvalue problem

Only practical if $d \leq 3$!

- Use approximation solution $\mathcal{D}^{\star}_{\mathrm{Hom}}$
- Use coordinate reaction/summary statistics $\xi : \mathbb{R}^d \to \mathbb{R}^m$, $m \in \{1, 2\}$

Approximate numerically the optimal diffusion... (2/4) 22/30

Potential $V(q) = \sin(4\pi q)(2 + 2\sin(2\pi q))$

Spectral gaps: 0.81 (constant), 10.6 (homogenized), 11.2 (optimal)

Approximate numerically the optimal diffusion... (2/4) 22/30

Potential $V(q) = \sin(4\pi q)(2 + 2\sin(2\pi q))$

Spectral gaps: 0.81 (constant), 10.6 (homogenized), 11.2 (optimal) Characterization: $\eta \approx -1.278$ kills the second term !

$$\mathcal{D}^{\star,\infty} = \gamma_{\infty} \mathrm{e}^{\beta V} \left(\left| e_{2,\infty}^{\prime} \right|^{2} + \frac{\mathrm{e}^{\eta} (1 + \mathrm{e}^{\eta} + \eta)}{1 + \mathrm{e}^{\eta} - \eta \mathrm{e}^{\eta}} \left| e_{3,\infty}^{\prime} \right|^{2} \right)^{1/(p-1)}$$

Approximate numerically the optimal diffusion... (3/4) 23/30

 $V(q) = \cos(2\pi q)$

Spectral gaps: 30.47 (constant), 32.43 (homogenized), 36.75 (optimal)

Approximate numerically the optimal diffusion... (3/4) 23/30

 $V(q) = \cos(2\pi q)$

Spectral gaps: 30.47 (constant), 32.43 (homogenized), 36.75 (optimal) Characterization: $\eta \approx -0.51 \rightarrow D^*$ is uniformly definite positive

Approximate numerically the optimal diffusion... (4/4) 24/30

Approximate numerically the optimal diffusion... (4/4) 24/30

Lower bound a	0.0	0.2	0.4	0.6	0.8	1.0
Spectral gap	11.227	11.226	11.208	11.145	10.983	10.572

Discretization of the SDE

• Random Walk with 'guided variance', using Euler-Maruyama scheme

$$q^{i+1} = q^i + \sqrt{2\beta^{-1}\Delta t} \,\mathcal{D}^{1/2}(q^i) \,\mathbf{G}^{i+1}$$

• use Metropolis acceptance/rejection to ensure unbiased sampling

Discretization of the SDE

• Random Walk with 'guided variance', using Euler-Maruyama scheme

$$q^{i+1} = q^i + \sqrt{2\beta^{-1}\Delta t} \,\mathcal{D}^{1/2}(q^i) \,\mathbf{G}^{i+1}$$

- use Metropolis acceptance/rejection to ensure unbiased sampling
- rejection probability $O(\Delta t^{1/2})$ for proposals based on naive Euler-Maruyama discretization of the continuous SDE⁷

Discretization of the SDE

• Random Walk with 'guided variance', using Euler-Maruyama scheme

$$q^{i+1} = q^i + \sqrt{2\beta^{-1}\Delta t} \, \mathcal{D}^{1/2}(q^i) \, \mathbf{G}^{i+1}$$

- use Metropolis acceptance/rejection to ensure unbiased sampling
- rejection probability $O(\Delta t^{1/2})$ for proposals based on naive Euler–Maruyama discretization of the continuous SDE⁷
- lowered to $O(\Delta t^{3/2})$ with dedicated (implicit) HMC algorithms 8 RMHMC algorithm:

$$H(q, p) = V(q) - \frac{1}{2} \ln \det \mathcal{D}(q) + \frac{1}{2} p^{\mathsf{T}} \mathcal{D}(q) p$$

⁷Fathi/Stoltz (2017)

⁸Noble/De Bortoli/Durmus (2022), Lelièvre/RS/Stoltz (2023)

...to observe the efficiency gains (1/3)

$$V(q) = \sin(4\pi q)(2 + \sin(2\pi q))$$

Spectral gaps: 0.81 (constant), 10.6 (homogenized), 11.2 (optimal)

26/30

...to observe the efficiency gains (2/3)

Settings: $\Delta t = 10^{-6}$, 10^4 samples generated uniformly on T, 100 bins to approximate the L^2 norm, results averaged over 10 simulations

Transition times between the two wells, $N_{\rm transitions} = 10^5$

Discretization for $\ensuremath{\mathcal{D}}$

- isotropic diffusions, piecewise constant
- FEM to compute eigenelements

Discretization for $\ensuremath{\mathcal{D}}$

- isotropic diffusions, piecewise constant
- FEM to compute eigenelements

Discretization for the dynamics

- RWMH algorithm
- rejection probability ${
 m O}(\Delta t^{1/2})$

Discretization for $\ensuremath{\mathcal{D}}$

- isotropic diffusions, piecewise constant
- FEM to compute eigenelements

Discretization for the dynamics

- RWMH algorithm
- rejection probability $O(\Delta t^{1/2})$

Efficiency

- Faster convergence
- Better mode exploration

Normalization: numerical criterion ? e.g. Metropolis rejection probability

Scaling with dimension

• using reaction coordinates/summary statistics, e.g.

$$\mathcal{D}(q) = D_0 \mathrm{e}^{\beta F(\xi(q))}, \qquad F = V - TS$$

• genuine diffusion matrix: beyond isotropic diffusions

Normalization: numerical criterion ? e.g. Metropolis rejection probability

Scaling with dimension

• using reaction coordinates/summary statistics, e.g.

$$\mathcal{D}(q) = D_0 \mathrm{e}^{\beta F(\xi(q))}, \qquad F = V - TS$$

• genuine diffusion matrix: beyond isotropic diffusions

Underdamped Langevin dynamics

- No variational framework
- optimization of constant diffusion (optimal friction matrix)⁹ \rightarrow Generalized HMC

^{30/30}

⁹ Chak/Kantas/Pavliotis/Lelièvre (2021)
Normalization: numerical criterion ? e.g. Metropolis rejection probability

Scaling with dimension

• using reaction coordinates/summary statistics, e.g.

$$\mathcal{D}(q) = D_0 \mathrm{e}^{\beta F(\xi(q))}, \qquad F = V - TS$$

• genuine diffusion matrix: beyond isotropic diffusions

Underdamped Langevin dynamics

- No variational framework
- optimization of constant diffusion (optimal friction matrix)^9 \rightarrow Generalized HMC

Thank you !

⁹ Chak/Kantas/Pavliotis/Lelièvre (2021)

...using various diffusion coefficients... (Bonus 1/1)

- Anisotropic diffusion coefficient $\mathcal{D}_{\mathsf{Tan}}(q) = \varepsilon \mathbf{I}_2 + \tilde{q}\tilde{q}^{\mathsf{T}}/||q||^2, \ \tilde{q} = (-y \ x)^{\mathsf{T}}$
- Isotropic diffusion coefficient $\mathcal{D}_{\mathsf{One}} \equiv (1 + \varepsilon) I_2, \ \varepsilon = 0.1$

...using various diffusion coefficients... (Bonus 1/1)

- Anisotropic diffusion coefficient $\mathcal{D}_{\mathsf{Tan}}(q) = \varepsilon \mathbf{I}_2 + \tilde{q}\tilde{q}^{\mathsf{T}}/||q||^2, \ \tilde{q} = (-y \ x)^{\mathsf{T}}$
- Isotropic diffusion coefficient $\mathcal{D}_{One} \equiv (1 + \varepsilon)I_2$, $\varepsilon = 0.1$ Computing: after fixed number of iterations, distance to the invariant measure of the angle distribution (uniform on $[0, 2\pi]$)

...using various diffusion coefficients... (Bonus 1/1)

- Anisotropic diffusion coefficient $\mathcal{D}_{\mathsf{Tan}}(q) = \varepsilon \mathbf{I}_2 + \tilde{q}\tilde{q}^{\mathsf{T}}/||q||^2, \ \tilde{q} = (-y \ x)^{\mathsf{T}}$
- Isotropic diffusion coefficient $\mathcal{D}_{\text{One}} \equiv (1 + \varepsilon)I_2, \quad \varepsilon = 0.1$ Computing: after fixed number of iterations, distance to the invariant measure of the angle distribution (uniform on $[0, 2\pi]$)

Definition [*H*-convergence]

A sequence $(\mathcal{A}^k)_{k \ge 1} \subset L^{\infty}(\mathbb{T}^d, \mathcal{M}_{a,b})$ *H*-converges to $\overline{\mathcal{A}} \in L^{\infty}(\mathbb{T}^d, \mathcal{M}_{a,b})$ if, for any $f \in H^{-1}(\mathbb{T}^d)$ such that $\langle f, \mathbf{1} \rangle_{H^{-1}, H^1} = 0$, the sequence $(u^k)_{k \ge 1} \subset H^1(\mathbb{T}^d)$ of solutions to

$$\left\{ egin{array}{l} -\operatorname{div}\left(\mathcal{A}^k
abla u^k
ight)=f & ext{on }\mathbb{T}^d, \ \int_{\mathbb{T}^d} u^k(q)\mathrm{d} q=0 \end{array}
ight.$$

satisfies in the limit $k \to +\infty$,

$$egin{array}{lll} u^k &
ightarrow u & ext{weakly in } H^1(\mathbb{T}^d), \ \mathcal{A}^k
abla u^k &
ightarrow \overline{\mathcal{A}}
abla u & ext{weakly in } L^2(\mathbb{T}^d)^d, \end{array}$$

where $u \in H^1(\mathbb{T}^d)$ is the solution of the homogenized problem

$$\begin{cases} -\operatorname{div}\left(\overline{\mathcal{A}}\nabla u\right) = f \quad \text{on } \mathbb{T}^d, \\ \int_{\mathbb{T}^d} u(q) \mathrm{d}q = 0 \end{cases}$$

Definition [Correctors]

If $\mathcal{A} = \mathcal{D} \exp(-\beta V)$, $(w_i)_{1 \leq i \leq d} \subset H^1(\mathbb{T}^d)$ is the family of unique solutions to the problem $\begin{cases} -\operatorname{div}(\mathcal{A}(e_i + \nabla w_i)) = 0, \\ \int_{\mathbb{T}^d} w = 0 \end{cases}$

Then for any $\xi \in \mathbb{R}^d$,

$$\xi^{\mathsf{T}}\overline{D}\xi = \xi^{\mathsf{T}}\left(\int_{\mathbb{T}^d} \mathcal{D}(q) \mathrm{d}\pi\right)\xi - \int_{\mathbb{T}^d} \nabla w_{\xi}^{\mathsf{T}} \mathcal{D}\nabla w_{\xi} \mathrm{d}\pi.$$