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Computing average properties... (1/2)

Target distribution

dr = z7te PV9qq

Use overdamped Langevin dynamics: ¢, € T¢

dgy = —=VV(q) dt + /251 dW,

e This is simply a stochastic perturbation of gradient dynamics

Ergodic average
1N,
Ex[f]~ & ;ﬂqw

with (¢*) samples from a trajectory solving (1)

4/30
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Properties of the standard overdamped Langevin dynamics

Generator L =-VV - V487 1A
e irreducibility/ergodicity: L is elliptic
e reversibility: self-adjoint on L?(7)

L=—-371V*V, O = —0q, + B0,V

e invariance of the canonical measure: £*1 =0« LIxr =0
d d
— [Ex =— “eod _/z: ) dr =0
G Enlota] = 5 ([ e oan) = [£(e%) an
'[rd

where e“(qo) = Eg [0(q:)]
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Diffusion matrix D(g) € S; (R) (not necessarily definite)*

dgr = (=D(@)VV (q) + 871 divD(q,)) dt + /28 1DY2(q;) AW,

with div D; = divergence of i-th column of D — generator Lp
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Diffusion matrix D(g) € S; (R) (not necessarily definite)*

dgr = (=D(@)VV (q) + 871 divD(q,)) dt + /28 1DY2(q;) AW,

with div D; = divergence of i-th column of D — generator Lp

Observations
e Ly, = L: sensible generalization

d
o Lp=—-B7'V'DV=-5"1Y 8;1?1-730% still self-adjoint
ij=1

1 Jardat/Bernard/Turq/Kneller (1999), Bou-Rabee/Donev/Vanden-Eijnden (2014)



..using various diffusion coefficients... (1/2) 6/30

Diffusion matrix D(g) € S; (R) (not necessarily definite)*

dg; = ( D(¢)VVig) + B~ dlvD (qt) ) dt + /25~ D1/2 (q¢) AWy

with div D; = divergence of i-th column of D — generator Lp

Observations
e L1, = L: sensible generalization

e Lp=—-p71V'DV =-3"1 Z 05, D”&h still self-adjoint
1,j=1
e Lpl =0: 7 is an invariant probability measure

1 Jardat/Bernard/Turq/Kneller (1999), Bou-Rabee/Donev/Vanden-Eijnden (2014)



..using various diffusion coefficients... (1/2) 6/30

Diffusion matrix D(g) € S; (R) (not necessarily definite)*

dg; = ( D(¢)VVig) + B~ dlvD (qt) ) dt + /25~ D1/2 (q¢) AWy

with div D; = divergence of i-th column of D — generator Lp

Observations
e L1, = L: sensible generalization

e Lp=—-p71V'DV =-3"1 Z 05, D”&h still self-adjoint
1,j=1
e Lpl =0: 7 is an invariant probability measure

e D = inverse of position-dependent mass tensor/metric (RMHMC)?

1 Jardat/Bernard/Turq/Kneller (1999), Bou-Rabee/Donev/Vanden-Eijnden (2014)
2Girolami/Calderhead (2011), Leliévre/RS/Stoltz (2023)



..using various diffusion coefficients... (1/2) 6/30

Diffusion matrix D(g) € S; (R) (not necessarily definite)*

dg; = ( D(¢)VVig) + B~ dlvD (qt) ) dt + /25~ D1/2 (q¢) AWy

with div D; = divergence of i-th column of D — generator Lp

Observations

e L1, = L: sensible generalization

o Lp=—-[3"1VDV =-p3"1 Z 9y, Dwﬁqz still self-adjoint
1,j=1

e Lpl =0: 7 is an invariant probability measure

e D = inverse of position-dependent mass tensor/metric (RMHMC)?

Motivations
e Explore efficiently multimodal targets
e Compensate for anisotropic potential energy landscapes

1 Jardat/Bernard/Turq/Kneller (1999), Bou-Rabee/Donev/Vanden-Eijnden (2014)
2Girolami/Calderhead (2011), Leliévre/RS/Stoltz (2023)
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e Example with V(q) = sin(47q)(2 + sin(2mq))
Dopts Dexp = eV, Dest = a € R (all three normalized in L?(7))

Potential energy




...using various diffusion coefficients... (2/2) 7/30

e Example with V(q) = sin(47q)(2 + sin(2mq))

_ 1%
Dopta Z)exp =ef

Potential energy

,Dest = a € R (all three normalized in L?())

optimal diffusion
homogenized diffusion
constant diffusion

L " . ) ,
o 250%10° 5.00%10° 7.50%10° 1.00x10°

RWMH example trajectories (same noise)

e ‘Optimal’ D helps to cross energy barriers (if V' 1, then D 1)
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e asymptotic variance in CLT
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Measuring convergence
e asymptotic variance in CLT
e convergence of the law at time ¢ towards the target distribution
e average exit time of a mode

This work — second option in a L?(w) framework

Main tool
Poincaré inequality satisfied by 7

2, -1 o 2 B ‘ o ‘2

0 < 7 20

Vg € L (7 ), /(7r 1) dW\A(D)/V<7r> dm
T Td

A(D): smallest nonzero eigenvalue of —3Lp: the spectral gap
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Claim Poincaré inequality implies that

Vo € L2(r ), ‘ i 1(

™

< e BTIAD) H@ _ 1’
s

L2(r) L2(m)

where 7; is the law at time ¢ of the overdamped Langevin process



...to accelerate convergence (2/4) 9/30

Claim Poincaré inequality implies that
-1

Vg € LQ(ﬂ'fl), -

< e BTIAD) H@ _ 1‘
™

L2(x) L3(m)

where 7; is the law at time ¢ of the overdamped Langevin process

Conditions to obtain a Poincaré inequality

e bounded connected domains: equivalent to Lebesgue measure
(Poincaré-Wirtinger inequality)
e Whole domain: conditions on the growth of V' at infinity

e In general: Logarithmic Sobolev Inequalities



...to accelerate convergence (3/4)

Spectral gap on H(7w) = ¢ u € H!(n) /udﬂ =0

Td
/VUTDVudW
AD)= inf ™
e Hy (m)\{0} /uz dr
Td

This work — Maximize the spectral gap A(D) w.r.t. D

Choices in the literature
e D = (V2V)~! for strictly convex potentials?
e D =PV ‘Langevin tempered algorithms’ 3

2Girolami/Calderhead (2011)
3Roberts/Stramer (2002)
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Previous works available

e Optimizing the diffusion in the case of the uniform distribution*
e Optimizing the diffusion for reversible MC on discrete spaces®

e Other choices to accelerate convergence, e.g. non-reversible drifts®

dg: = (—=VV(q) + b(q)) dt + 28~ dW;, V. (bm) =0

This work: staying in the realm of reversible dynamics

4Henrot (2006)
5Boyd/Diaconis/Parrilo/Xiao (2009)

6e.g. Lelievre/Nier/Pavliotis (2013)
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e Aim: Estimation of E;[f] = /fdﬂ', Toce PV
Td
with the estimator

1 X A ,
IN :Nzlf(ql)7 quﬂ-
1=

with ¢* obtained from the integration of the overdamped Langevin

dynamics

dg: = (=D(g:)VV () + " divD(gr)) dt +

26-1D(q,)/2dW,
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e Aim: Estimation of E;[f] = /fd7r, moce AV
Td
with the estimator
1 X A ,
IN :Nzlf(QZ)7 qZNﬂ-

with ¢* obtained from the integration of the overdamped Langevin
dynamics

dgr = (=D(q)VV () + " divD(g)) dt + 261D (q,)'/2dW,

e Difficulty: explore anisotropic potentials with multiple minima

e Challenge: Find optimal diffusion coefficient D to accelerate
convergence = Maximize the spectral gap A(D)!
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Il. Characterization of the optimal diffusion
e Establish a proper optimization problem...
e ...to obtain necessary conditions on the solution.

e Approximation using homogenization
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Need to set normalizing constraints on D
e A(aD) = aA(D) P +oo: large D requires smaller time steps
a—r—+00

e [ bounds trivial (simply saturates the constraint)

Our choice: D € L (T4 Mgyp) for
1<p<+4oo,a,b>0if

e VOD(g) € Moy = {M €S, \va eRYal¢P <eTMe<H! |£|2} a.e.

1/p
\Dup—(/|p @V>d@

Maximization is performed on

endowed with

= {D e LT, Map) | IDllp <1}

Open question: what is a good normalization 7 Likely related to the
NuUMerics...
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Existence of a maximizer for p € [1, 4+00): for any a € [0, |I4|5 "]

and b > 0 such that ab < 1, there exists D* € such that
A(D*) = sup A(D)
De

Moreover, it holds:
e For any open set Q C T¢, there exists ¢ € © such that D*(q) # 0

o [ID@le @ ag=1
Td

Proof ideas:
e A is bounded (Poincaré inequality)
e A is concave (sup of linear functions in D)
e A is upper semicontinuous for the weak-* L2° topology (b > 0)

e the set is compact for the same topology
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Settings: p € (1,400), |-|p = Frobenius norm, a =0 and b > 0 ‘small
enough’, continuity assumption for D* for d = 1

Claim If D* is uniformly definite positive, then the eigenvalue A(D*) is
degenerate

Proof If not, write the Euler-Lagrange equation (perturbation theory)
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Settings: p € (1,400), |-|p = Frobenius norm, a =0 and b > 0 ‘small
enough’, continuity assumption for D* for d = 1

Claim If D* is uniformly definite positive, then the eigenvalue A(D*) is
degenerate

Proof If not, write the Euler-Lagrange equation (perturbation theory)

/51) : (Vups @ Vup+)dr = p'y/ |D*]f:2 D*: §De PPV dq
Td Td

where —BLp+ups = A\(D*)up+ so that

D* =« \D*]Q_p BP-DV\7yp. @ Vups — contradiction !

Difficulty: the map D +— A(D) may therefore not be differentiable at D*,
it cannot be used as is to characterize D*
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Smooth-maximum approach: sup f,(D) and let @ — 400
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Smooth-maximum approach: sup f,(D) and let @ — 400

De
TrLQ(u) (ﬁpeaﬁp) i>2

= A
Trpa(,(e*e?) — 1 Z @t amrto

12

fa(D) =

e Euler-Lagrange equation for f,

].+ aA « OéHa o
2 —Pp B (p—1)V Z |: GkQ ) Ak, a:| vek,a ® Vek,a
k>2 «

D *7a|

_ Nia _ ) Aio
where G, = Zi>2 eMia M, = Zi% Aia €

e The limit depends on  lim «(Aj4 —A2q)
a——+00



...to obtain necessary conditions on the solution. (2/2) 17/30

Smooth-maximum approach: sup f,(D) and let @ — 400

De
r Z }\iea)\i
TI'LQ (ﬁpea D) i>2
fa(D) - T w al = A A2
I'L2(M)(e D) -1 Zea i a—+00

12

e Euler-Lagrange equation for f,

o1+ g o oaH, o0
D =, |D* a‘Q P B (p— 1)VZ |: Gk2 ) Ak, Q:| vek,a ®vek,a
k>2 @

where Go, = 32,5, €M Hy = 3000 Ni 0@
e The limit depends on  lim «(Aj4 —A2q)
a—+00
e Typical example: d = 1, degeneracy of order 2 for Az

el1+e"+n), , 2 1/(p—1)
T e %l

Do A% / 2
Wooe <}62,OO| 1 + en — nen
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Goal: Obtain a good approximation of the optimal diffusion

e Idea 1: study the asymptotic behaviour of the optimal diffusion in the
homogenized limit

e Idea 2: optimize the periodic homogenization limit

Homogenization
D D
k k—+o0o0 7 L’Hom
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E 2
A 3
E 5
= =3
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Homogenization
* *
Dk ’ DHom

k——+o00



Approximation using homogenization theory (1/1) 18/30

Goal: Obtain a good approximation of the optimal diffusion

e Idea 1: study the asymptotic behaviour of the optimal diffusion in the
homogenized limit

e Idea 2: optimize the periodic homogenization limit

Homogenization
D > D
k k—+o0o0 7 L’Hom
s g
] o
Ry 3
E 5
= =3
o e
Homogenization
* *
Dk ’ DHom

k——+o00

Commutation optimization/homogenization: maximize Ay, (D)

Dﬁom (Q) = eBV(q) Iy
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e possible degeneracy of the spectral gap A(D*) implies differentiability
issues
e smooth-maximum approach adapted to Lp (trace-class operator
on L%(m))
e Can vanish on single points — ergodicity issues
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Normalizing constraints on D: our choice is
1/p

IDll, = / D(g)E e V@ 4
Td

Characterization of D*
e possible degeneracy of the spectral gap A(D*) implies differentiability
issues
e smooth-maximum approach adapted to Lp (trace-class operator
on L%(m))
e Can vanish on single points — ergodicity issues

Homogenization theory: good approximation is

ﬁom (Q) = eBV(q) Iq
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I1l. Numerical results
e Approximate numerically the optimal diffusion...
e ...approximate the dynamics...

e to observe the efficiency gains
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Maximization of the spectral gap
e D isotropic, piecewise constant, on uniform mesh
e Finite Element approximation of test functions/eigenfunctions
e Sequential Least Squares Quadratic Programming algorithm for
nonlinear eigenvalue problem with constraints
A(D)Up = A(D)BUp,  UpBUp =14

with
[A(D)]; ; :/ V] DV dr, [Bli.; :/ pjp;dm
Td Td

— Generalized eigenvalue problem

Only practical if d < 3!

e Use approximation solution DF,

Hom
e Use coordinate reaction/summary statistics £ : R — R™, m € {1,2}
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Potential V' (¢) = sin(47q)(2 4 2sin(27q))

\
\
\
AN
J N,
vy

Spectral gaps: 0.81 (constant), 10.6 (homogenized), 11.2 (optimal)

Characterization: n ~ —1.278 kills the second term !

1/(-1)
, v 2 el(1+e+ 2
Do = o <|e;my gt
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V(q) = cos(2mq)
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V(q) = cos(2mq)

=~
\ optimal diffusion
25 ——— homogenized diffusion
\ —--—- canstant diffusion
—-—-- target distributien
20 +
15 |
1.0 +
0.5
- .

0.00 0.25 0.50 0.75 1.00

Spectral gaps: 30.47 (constant), 32.43 (homogenized), 36.75 (optimal)

Characterization: n &~ —0.51 — D* is uniformly definite positive
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Optimal diffusions Normalized by D

Hom
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10 [ \\‘\‘: ;_ - = ‘,//
. \ j \\\ /
Optimal diffusions Normalized by Dfy
Lower bound a | 0.0 0.2 0.4 0.6 0.8 1.0

Spectral gap ‘11.227 11.226 11.208 11.145 10.983 10.572
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Discretization of the SDE
e Random Walk with ‘guided variance’, using Euler—Maruyama scheme
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e use Metropolis acceptance/rejection to ensure unbiased sampling
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..approximate the dynamics... (/1) 25/30

Discretization of the SDE
e Random Walk with ‘guided variance’, using Euler—Maruyama scheme

'=q¢ + V28 1AtDV2(¢) G

e use Metropolis acceptance/rejectlon to ensure unbiased sampling

e rejection probability O(A¢'/2) for proposals based on naive
Euler—Maruyama discretization of the continuous SDE’

o lowered to O(A#%/2) with dedicated (implicit) HMC algorithms®
RMHMC algorithm:

H(q,p) = V(q) — %ln det D(q) + %pTD(q)p

"Fathi/Stoltz (2017)
8Noble/De Bortoli/Durmus (2022), Leliévre/RS/Stoltz (2023)
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V(q) = sin(4mq)(2 + sin(27q))

30

S

Mean squared distance
S

0 2.50x10° 5.00x10° 7.50%10° 1.00x10°
Number of iterations

Mean square distance

Spectral gaps: 0.81 (constant), 10.6 (homogenized), 11.2 (optimal)



...to observe the efficiency gains (2/3) 27/30

—— optimal diffusion
—— homogenized diffusion
— constant diffusion

_—— E'XP(*)‘qnt
=== p(=Ay1)
——— (A t)

L2 error

Physical time

L? error between empirical and target distributions

Settings: At = 1076, 104 samples generated uniformly on T, 100 bins to approximate the L2 norm, results

averaged over 10 simulations
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30 + optimal diffusion
— — — homogenized diffusion
—-—-- constant diffusion
25
. —=F—-—
] e
£ 20 - —-— I—
e
m
8]
w15+
=
=
o
10
5T —
—
w0 1073 1077

At

Transition times between the two wells, Niransitions = 10°
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e FEM to compute eigenelements
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Discretization for D
e isotropic diffusions, piecewise constant

e FEM to compute eigenelements

Discretization for the dynamics
¢ RWMH algorithm
e rejection probability O(A¢!/?)

Efficiency
e Faster convergence
e Better mode exploration
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Extensions

30/30

Normalization: numerical criterion ? e.g. Metropolis rejection probability

Scaling with dimension
e using reaction coordinates/summary statistics, e.g.

D(q) = DpePFC¢@)  p=v_T8

e genuine diffusion matrix: beyond isotropic diffusions

Underdamped Langevin dynamics
e No variational framework
e optimization of constant diffusion (optimal friction matrix)®
— Generalized HMC
Thank you !

9 Chak/Kantas/Pavliotis/Leliévre (2021)
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e Anisotropic diffusion coefficient Dran(q) = €la +G3" /||q||?, ¢ = (—y )7
e Isotropic diffusion coefficient Dope = (1 +¢)lz, € =0.1

Computing: after fixed number of iterations, distance to the invariant
measure of the angle distribution (uniform on [0, 27])

1072

-8 Iso_HMC
107 -@- Aniso_HMC
A~ Iso_GHMC

—A- Aniso_GHMC

Average of total variation distance

Time step At
= Compromise: small/large time steps (exploration vs rejection)
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Definition [H-convergence]

A sequence (A¥)y>1 C L®(T% Ma,,) H-converges to A € L™ (T% M,) if, for
any f € H='(T%) such that (f, 1)1 g1 = 0, the sequence (uF)gs1 € HY(T?)
of solutions to

—div (.AkVuk) =f onT%

/w u*(q)dg =0

satisfies in the limit & — +o0,
ufF =~ weakly in H'(T%),
APVuF ~ AVu  weakly in L*(T%)?,
where u € H'(T?) is the solution of the homogenized problem

—div (ZVu) =f onT¢
/ u(q)dg =0
Td
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Definition [Correctors]

If A= Dexp(—BV), (wi)icica € H'(T?) is the family of unique
solutions to the problem

{ div(A(e; + Vw;)) =0,

/ w=20
Td

Then for any ¢ € R?,

§TDE=¢" ( /T dD(q)dw> = /T YV DVugdr.
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