

Established by the European Commission

Computing free energy differences using non-equilibrium dynamics

Régis SANTET

(CERMICS, École des Ponts & MATHERIALS Team, Inria Paris)

 d^2 reading group, Dept. of Statistics, Oxford

Free energy

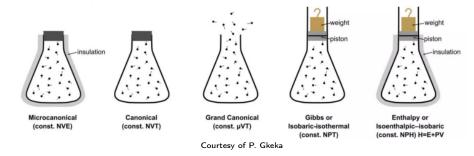
- **State function** of a thermodynamic system (internal energy, enthalpy, entropy, etc.)
- Change in free energy = maximum amount of work the system can perform in a process at constant temperature
- Helmoltz free energy

$$F = U - T_b S$$

• Applications: gas-phase reactions, energetics of a process: a drug binding a protein or its partioning across cell membranes, ...

NVT ensemble

ullet F has a minimum at equilibrium as long as certain variables are held constant: NVT thermodynamic ensemble



Canonical measure

$$\mu(dq\,dp) = Z^{-1} \mathrm{e}^{-\beta H(q,p)}, \quad H(q,p) = V(q) + \frac{1}{2} p^{\mathsf{T}} M^{-1} p, \quad \beta^{-1} = k T_b$$

 \bullet Z is the partition function [normalizing constant]

Langevin dynamics

ullet Admits μ as its invariant measure

$$\begin{cases} dq_t = M^{-1}p_t dt \\ dp_t = -\nabla V(q_t) dt - \gamma M^{-1}p_t dt + \sqrt{2\gamma\beta^{-1}} dW_t \end{cases}$$

ullet Overdamped Langevin: reversible w.r.t. $\pi \propto {
m e}^{-\beta V}$

$$dX_t = -\nabla V(X_t) dt + \sqrt{2\beta^{-1}} dW_t$$

• Ergodic averages:

$$\langle \varphi \rangle = \int \varphi \, d\pi = \lim_{T \to +\infty} \frac{1}{T} \int_{0}^{T} \varphi(X_t) dt$$

ightarrow It all comes down to the ability to perform an efficient sampling of the configurational space

• In practice: Markov Chain Monte Carlo methods (e.g. GHMC, ULA)

Free energy and partition function

• Denote by $\lambda \in [0,1]$ an external parameter such that the system is in state A for $\lambda=0$, and state B for $\lambda=1$ Example: insertion of a particle

$$V_{\lambda}(q_1, q_2, q_3) = V(\|q_2 - q_1\|) + \lambda [V(\|q_3 - q_1\|) + V(\|q_3 - q_2\|)]$$

• One can show that

$$F(\lambda) = -\beta^{-1} \ln Z_{\lambda} = -\beta^{-1} \ln \int e^{-\beta V_{\lambda}}$$

 \rightarrow The change in free energy is

$$\Delta F = F(1) - F(0) = -\beta^{-1} \ln (Z_1/Z_0) \iff e^{-\beta \Delta F} = \frac{Z_1}{Z_0}$$

One needs to compute a ratio of normalizing constants

Available methods

- Many methods¹ have been constructed to compute ΔF :
- \rightarrow thermodynamic integration, non-equilibrium methods, adaptive methods (ABF, metadynamics), selection mechanisms and parallel replicas, etc.

• I'll present a non-equilibrium method based on Jarzynski's equality² and introduce one diffusion models framework³ based on sequential Monte Carlo samplers⁴

¹Lelièvre/Rousset/Stoltz (2010)

² Jarzynski (1997)

³Doucet *et al* (2022)

⁴Del Moral et al (2006)

Jarzynski's equality

• Choose an annealing schedule $\Lambda:[0,T]\to [0,1]$ that transports π_0 to π_1 using interpolant distributions $\pi_{\Lambda(t)}\equiv\pi_{\lambda_t}\propto \mathrm{e}^{-V_{\lambda_t}}$ Example: $\pi_{\lambda}\propto\pi_0^{(1-\lambda)}\pi_1^{\lambda}$

Define the SDE

$$dX_t = -\nabla V_{\lambda_t}(X_t) + \sqrt{2} \, dW_t, \qquad X_0 \sim \pi_0$$

and the path functional

$$\mathcal{W}(\{X_t\}_{0 \leqslant t \leqslant T}) = \int_{0}^{T} \dot{\lambda}_t \, \partial_{\lambda} V_{\lambda_t}(X_t) \, dt$$

• Then it holds

$$e^{-\beta\Delta F} = \left\langle e^{-\beta W} \right\rangle$$

where the average is with respect to $X_0 \sim \pi_0$ and the realizations of the Brownian motion

Numerical example - I

• Setting: transporting one Gaussian to another

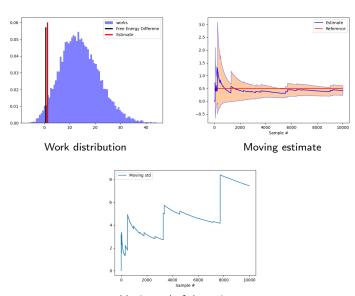
$$\begin{cases} \pi_0 = \mathcal{N}(\mu_0, \sigma_0^2), \mu_0 = -2, \sigma_0 = 1\\ \pi_1 = \mathcal{N}(\mu_1, \sigma_1^2), \mu_1 = 2, \quad \sigma_1 = 0.5 \end{cases}$$

- \bullet Time step $\Delta t \sim 10^{-4}$, linear schedule $\Lambda(t) = t/T$, $N_{\rm samples} \sim 10^5$
- Integrating the dynamics using the Euler–Maruyama scheme:

$$x_{k+1} = x_k - \Delta t \nabla V_{\lambda_{k+1}}(x_k) + \sqrt{2\Delta t} G_{k+1}, \qquad G_{k+1} \sim \mathcal{N}(0, 1)$$

• <u>Remark</u>: one could use a 'backward' scheduling, depending on which one is more favorable thermodynamically (insertion vs. deletion)

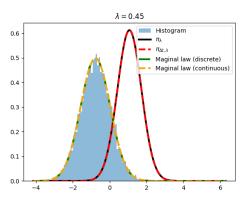
Numerical example - II



Moving std of the estimate d^2 reading group

Numerical example - III

• The variance of the estimator is intuitively linked to the variance of the work distribution



 \rightarrow The law of the process q_t 'lags behind': variance would be minimal if the switching was infinitely slow

Escorted Jarzynski

• Construct an 'escorting drift' $u(x, \lambda)$

$$dX_t = -\nabla V_{\lambda_t}(X_t) dt + \dot{\Lambda}_t u(X_t, \lambda_t) dt + \sqrt{2} dW_t$$

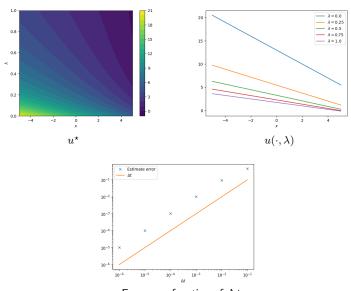
 \rightarrow If $q^u_t=\pi_{\lambda_t},$ only 1 sample is needed and you only get discretization errors

• An optimal escorting drift u^* solves

$$\partial_{\lambda} \pi_{\lambda} + \nabla \cdot (u^{\star} \pi_{\lambda}) = 0$$

→ Non-uniqueness, impossible to construct exactly in general

Numerical example - IV



Using diffusion models

• Computing normalization constants have been investigated a lot in the ML community recently, in particular with the rise of diffusion models and its link with optimal transport

 Setting based on a paper by Doucet et al (2022) & Geffner/Domke (2023)

Constructing the estimate

- Set $\pi_i = Z_i^{-1} \gamma_i$ with $\gamma_i = \mathrm{e}^{-V_i}$, $i \in \{0, 1\}$
- Annealing schedule $\pi_{\gamma} \propto {\rm e}^{-V_{\lambda}}$, forward transition kernel

$$F_{k+1}(x_{k+1}|x_k) = \mathcal{N}\left(x_{k+1}; x_k - \Delta t \nabla V_{\lambda_{k+1}}(x_k), 2\Delta t\right)$$

- Choose any backward transition kernel B_k , i.e. it only has to satisfy $\int B_k(x|x')dx = 1$ for any x'
- \bullet Then $\mathrm{e}^{-\Delta F} = \left\langle \mathrm{e}^{-\mathcal{W}} \right\rangle$ with

$$e^{-\mathcal{W}} = \frac{\gamma_1(x_N)}{\gamma_0(x_0)} \prod_{k=0}^{N-1} \frac{B_k(x_k|x_{k+1})}{F_{k+1}(x_{k+1}|x_k)}$$

Two links with Jarzynski's methods - I

• Annealed Importance Sampling: choosing

$$B_k(x_k|x_{k+1}) = \pi_{\lambda_{k+1}}(x_k) \frac{F_{k+1}(x_{k+1}|x_k)}{\pi_{\lambda_{k+1}}(x_{k+1})}$$

leads to

$$\mathcal{W} = \sum_{k=0}^{N-1} (V_{\lambda_{k+1}} - V_{\lambda_k})(x_k) \approx \int_{0}^{T} \dot{\lambda}_t \partial_{\lambda} V_{\lambda_t}(x_t) dt$$

→ We recover the usual work in Jarzynski's equality

Link with Jarzynski's methods - II

• The optimal backward kernel (minimizing the variance of the estimator) is

$$B_k^{\text{opt}}(x_k|x_{k+1}) = \frac{q_{\lambda_k}(x_k)F_{k+1}(x_{k+1}|x_k)}{q_{\lambda_{k+1}}(x_{k+1})}$$

yielding the estimator $\frac{\gamma_1(x_N)}{Z_0q_N(x_N)}$

• If instead

$$F_{k+1}^{u^\star}(x_{k+1}|x_k) = \mathcal{N}(x_{k+1}; x_k - \Delta t \nabla V_{\lambda_{k+1}}(x_k) + \Delta t \dot{\lambda}_{k+1} u^\star(x_k, \lambda_{k+1}), 2\Delta t),$$
 then $q_{\lambda_k} = \pi_{\lambda_k}$ for any k so that

$$B_k^{\text{opt},u^*}(x_k|x_{k+1}) = \frac{\pi_{\lambda_k}(x_k)F_{k+1}^{u^*}(x_{k+1}|x_k)}{\pi_{\lambda_{k+1}}(x_{k+1})},$$

and $e^{-\mathcal{W}}$ does not depend on the trajectory

 \rightarrow we recover the 0 variance estimator for the optimal escorting drift

Learning the score

• In practice, one approximates the optimal backward kernel, which lead to a transition kernel related to the structure of the reversed SDE

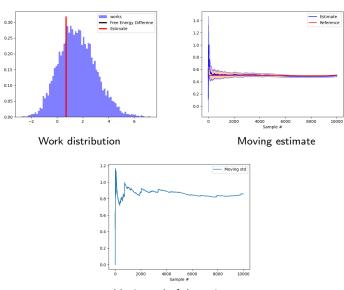
$$dY_t = \nabla V_{\lambda_{T-t}}(Y_t) dt + 2\nabla \log q_{T-t}(Y_t) dt + \sqrt{2} dW_t, \qquad Y_T \sim q_T$$

ullet One then approximates the score term using a neural network $s_{ heta}(T-t,y)$, minimizing the KL divergence between the forward and (parameterized) backward path distributions

$$D_{\mathrm{KL}}(Q||P_{\theta}) = \mathbb{E}_{Q} \left[\int_{0}^{T} \|s_{\theta}(t, x_{t}) - \nabla \log q_{t}(x_{t})\|^{2} dt \right] + C_{1}$$

$$\approx \Delta t \sum_{k=1}^{K} \mathbb{E}_{Q} \left[\|s_{\theta}(t_{k}, x_{k}) - \nabla \log F_{k}(x_{k}|x_{k-1})\|^{2} \right] + C_{2}$$

Numerical example - V



Moving std of the estimate d^2 reading group

Investigations

 \bullet Learning s_{θ} to compute ΔF in the overdamped/underdamped setting (which architecture ?)

• Study the connection with **Schrödinger bridge**⁵: sequence of estimators

Adapt to the reaction coordinate framework

⁵Leonard (2014), Vargas/Nusken (2023)

Reaction coordinate framework - I

• Reaction coordinate: $\xi: \mathbb{R}^d \to \mathbb{R}$, system constrained to the submanifold

$$\Sigma(\lambda) = \left\{ x \in \mathbb{R}^d \,\middle|\, \xi(x) = \lambda \right\}$$

ightarrow It is assumed that $|\nabla \xi|$ is nonzero at the vicinity of $\Sigma(\lambda)$ Example: dihedral angles, distances between two molecular groups

• Free energy is

$$F(\lambda) = -\beta^{-1} \ln \left(\int_{\Sigma(\lambda)} \pi^{\xi}(dx|\lambda) \right)$$

 $\to \pi^\xi(\cdot|\lambda)$ is the measure π conditioned to a fixed value of λ of the map ξ

ullet This presentation adapts to the case $\xi:\mathbb{R}^d o \mathbb{R}^m$ with $m\geqslant 1$

Reaction coordinate framework - II

• Switched dynamics: schedule $\Lambda(0) = \lambda_0, \Lambda(T) = \lambda_T$.

$$\begin{cases} dX_t = -\nabla V^{\xi}(X_t) dt + \sqrt{2\beta^{-1}} dW_t + \nabla \xi(X_t) d\theta_t, & q_0 \sim \pi^{\xi}(\cdot|0), \\ \xi(X_t) = \lambda_t \end{cases}$$

 $\to V^\xi = V + \beta^{-1} \ln |\nabla \xi|$, $(\theta_t)_{t \in [0,T]}$ are Lagrange multipliers (with available expressions)

ullet Work is defined as the integral of the local mean force f

$$\mathcal{W}(\{X_t\}_{0 \leqslant t \leqslant T}) = \int_{0}^{T} \dot{\Lambda}(s) f(X_s) ds$$

with

$$f = \frac{\nabla \xi \cdot \nabla V}{|\nabla \xi|^2} - \beta^{-1} \operatorname{div} \left(\frac{\nabla \xi}{|\nabla \xi|^2} \right)$$

 \rightarrow Can we adapt diffusion models estimates to this framework ?

Free energy and partition function

- Internal energy is $U = \langle H \rangle = Z^{-1} \int H e^{-\beta H} = -\partial_{\beta} \ln Z$
- ullet A change of an external variable λ applies a force equal to

$$F = -\partial_{\lambda}H, \qquad \langle F \rangle = \beta^{-1}\partial_{\lambda}\ln Z$$

ullet If both eta and λ vary, then [chain rule]

$$d(\ln Z) = \partial_{\beta} \ln Z d\beta + \partial_{\lambda} \ln Z d\lambda = -U d\beta + \beta F d\lambda = -d(\beta U) + \beta dU + \beta F d\lambda$$

The change in internal energy is

$$TdS - Fd\lambda = dU = \beta^{-1}d(\ln Z + \beta U) - Fd\lambda$$

Hence

$$S = k \ln Z + U/T$$

so that

$$F = -\beta^{-1} \ln Z$$